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Abstract
In molecular quantum similarity measure between two molecules, using the
molecular electron density, the major task involves the accurate numerical
evaluation of overlap between the two electron densities in the integral measure.
By expanding the electron densities in terms of atomic orbitals, using the
linear combination of atomic orbitals approach, a large number of overlap-like
quantum similarity integrals over the basis functions in the two molecules will
be required accurately for the calculation of a meaningful quantum similarity
measure. Improvement of the computational methods of these integrals would
be indispensable to a further development in computational studies of large
molecular systems. Analytic expressions were obtained for these overlap-
like quantum similarity integrals over Slater-type functions, in terms of the
usual two-centre overlap integrals over B functions. Different approaches were
developed for the numerical evaluation of these two-centre overlap integrals
over B functions, which can be used for the numerical evaluation of the two-
centre overlap-like quantum similarity integrals over Slater-type functions.
In this work we present our approach which is based on the use of nonlinear
transformations for improving convergence of highly oscillatory integrals. In
the case of more complicated multicentre integrals, this approach is shown
to be able to produce remarkably good results. We also present different
representations, which were obtained by Steinborn group, and which can be
used for a fast and accurate computation of the two-centre overlap-like quantum
similarity integrals over Slater-type functions.
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1. Introduction

The concept of molecular similarity is used throughout chemistry. From a mathematical point
of view, based on quantum chemical ideas, the concept of molecular similarity presents severe
difficulties.

Many alternatives have been developed to quantify the similarity of two molecules and
to align molecules [1–3]. Despite all these efforts, there is still no definite answer on how to
express or evaluate molecular similarity. The complete theory of molecular quantum similarity
was reviewed in several papers by Carbò et al [4–7].

Quantum molecular similarity measure (QSM) between two molecules can be expressed
as an integral measure computation between the density functions attached to the involved
molecules [4–9]:

Z12 =
∫

ρ1(�r)ρ2(�r) d�r, (1)

where ρ1(�r) and ρ2(�r) refer to the electron density of molecules 1 and 2, respectively, at the
point r in space, and they are given by

ρ1(�r) = �∗
1 (�r)�1(�r) =

N1∑
µ=1

N1∑
ν=1

cµcνϕ
∗
µ(�r)ϕν(�r)

(2)

ρ2(�r) = �∗
2 (�r)�2(�r) =

N2∑
σ=1

N2∑
κ=1

cσ cκϕ
∗
σ (�r)ϕκ(�r),

where �1 and �2 stand for the wavefunctions. The coefficients cµ, cν, cσ and cκ stand for the
LCAO (linear combination of atomic orbitals) coefficients of the atomic orbitals ϕµ, ϕν, ϕσ

and ϕκ .
The element Z11 is called quantum self-similarity measure [4–9]. For a set of N molecules,

all the element Z12 form a symmetrical matrix Z(N ×N), which is called molecular quantum
similarity matrix (MQSM), and where Z11 are the diagonal elements.

Carbò et al introduced the so-called Carbò similarity indices (CSI) [10], which is used
to transform all the elements of the matrix Z into numbers lying in the interval ]0, 1]. This
transformation involves the calculation of the elements C12 given by

C12 = Z12√
Z11Z22

. (3)

The diagonal elements of the obtained matrix C are equal to 1 and all other elements are in
the interval ]0, 1]. The elements C12 of the matrix C reflect the extent of similarity between
the two molecules [11, 12].

By expressing the densities in terms of LCAO approach as in equation (2), one can express
the integrals (1) in terms of overlap-like quantum similarity integrals as follows:

Z12 =
N1∑

µ=1

N1∑
ν=1

N2∑
σ=1

N2∑
κ=1

cµcνcσ cκ

∫
ϕ∗

µ(�r)ϕν(�r)ϕ∗
σ (�r)ϕκ(�r) d�r. (4)

The integrals occurring in the above equation, which will be referred to as Z
µνσκ

12 :

Z
µνσκ

12 =
∫

ϕ∗
µ(�r)ϕν(�r)ϕ∗

σ (�r)ϕκ(�r) d�r, (5)

are the so-called overlap-like quantum similarity integrals. These integrals can be one-, two-,
three- or four-centre terms.
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It is clear that molecular quantum similarity measurements require a calculation of a large
number of integrals, occurring in the calculation of the overlap.

In the present work, we used Slater-type functions (STFs) [13] as a basis set to represent
atomic orbitals. These functions are better suited than Gaussian-type functions (GTFs) [14]
to represent electron wave functions near the nucleus and at long range [15].

Using the fact that the product of two STFs centred at the same point can be expressed as
a single STF centred at the same point, one can express the two-centre overlap-like quantum
similarity integrals over STFs in terms of the usual two-centre overlap integrals over STFs.
Such integrals have been studied by many authors and different approaches were developed for
their analytic and numerical evaluation [16–29]. The numerical evaluation of these overlap-
like quantum similarity integrals over STFs will probably benefice from the work previously
done on the usual two-centre overlap integrals.

The two-centre overlap integrals over STFs are in their turn expressed in terms of overlap
integrals over B functions [22, 30, 31]. These B functions have some remarkable mathematical
properties applicable to multicentre integral problems [31, 32], their Fourier transform is of
exceptional simplicity [16] and this is why they are well adapted to the Fourier transformation
method [33, 34], which led to an analytic development for the overlap integrals over B functions
[16, 19].

In the present work, we used an analytic expression obtained by Weniger and Steinborn
[16], which involves semi-infinite spherical Bessel integrals. This analytic expression turned
out to be very difficult to evaluate accurately due to the presence of the spherical Bessel function
in the semi-infinite integral. The convergence problems could be solved by using appropriate
mathematical techniques, such as convergence accelerators or nonlinear transformations
for improving convergence of highly oscillatory integrals [35]. Among these nonlinear
transformations, the D transformation of Sidi [36–38] is certainly one of the most powerful
when dealing with integrals, whose integrands satisfy a certain type of linear differential
equations.

In previous work [39–46], we showed that this nonlinear D transformation, combined
with some extrapolation techniques, permits a remarkably efficient and reliable evaluation of
complicated multi-centre integrals over B functions and over STFs. It is now shown that this
approach can also be applied to the two-centre overlap integrals over B function [29]. The
integrand of the semi-infinite spherical Bessel integrals satisfies all the conditions to apply
the D transformation. This led to the development of highly accurate numerical evaluation of
the two-centre overlap integrals over B functions, which is used for the numerical evaluation
of the two-centre overlap-like similarity integrals.

The two-centre overlap integrals were thoroughly studied by Steinborn group [16–22].
Numerous different representations, which can be used for accurate and rapid computation of
overlap integrals over B functions, were obtained. FORTRAN programs were developed by
Homeier, Weniger and Steinborn [20]. These representations can also be used for the analytic
development of the two-centre overlap-like quantum similarity integrals over STFs.

In this work, we used the code ACJU developed by Homeier, Weniger and Steinborn [20]
for the numerical evaluation of the two-centre overlap integrals over B functions occurring in
the analytic expression of the two-centre overlap-like similarity integrals over STFs.

Numerical results are obtained for the two-centre overlap-like similarity integrals of the
first and second kinds. These results are in a complete agreement with those obtained using the
one-centre two-range method [47] and also using the approach based on the epsilon algorithm
of Wynn [48].

Comparisons with regard to accuracy and rapidity showed that the ACJU code gives
highly efficient results and leads to the most rapid algorithm. Note that the algorithm using
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the nonlinear D leads to a highly efficient numerical evaluation of the molecular integrals and
the calculation times can be further reduced by developing extrapolation techniques specially
suited to the two-centre overlap integrals.

2. General definitions and properties

The two-centre overlap-like quantum similarity integrals Z
n1n2n3n4
12 over Slater-type functions

(STFs) are given by ( �A, �B ∈ R
3)

• the two-centre integrals of the first kind:∫
χ

m1
n1,l1

(ζ1, �r − −→
OA)∗χm2

n2,l2
(ζ2, �r − −→

OA)χ
m3
n3,l3

(ζ3, �r − −→
OA)∗χm4

n4,l4
(ζ4, �r − −→

OB) d�r. (6)

• the first-type of the two-centre integrals of the second kind:∫
�r
χ

m1
n1,l1

(ζ1, �r − −→
OA)∗χm2

n2,l2
(ζ2, �r − −→

OA)χ
m3
n3,l3

(ζ3, �r − −→
OB)∗χm4

n4,l4
(ζ4, �r − −→

OB) d�r. (7)

• the second type of the two-centre integrals of the second kind:∫
�r
χ

m1
n1,l1

(ζ1, �r − −→
OA)∗χm2

n2,l2
(ζ2, �r − −→

OB)χ
m3
n3,l3

(ζ3, �r − −→
OA)∗χm4

n4,l4
(ζ4, �r − −→

OB) d�r. (8)

STFs are defined according to the following relationship [13]:

χ̃m
n,l(ζ, �r) = rn−1 e−ζ rYm

l (θ�r , ϕ�r ), (9)

where n, l,m are the quantum numbers and where Ym
l (θ, ϕ) stands for the surface spherical

harmonic and is defined explicitly using the Condon–Shortley phase convention as follows
[49]:

Ym
l (θ, ϕ) = im+|m|

[
(2l + 1)(l − |m|)!

4π(l + |m|)!
] 1

2

P
|m|
l (cos θ) eimϕ, (10)

P m
l (x) is the associated Legendre polynomial of lth degree and mth order.

The normalized STFs are defined by

χm
n,l(ζ, �r) = N (ζ, n)χ̃m

n,l(ζ, �r), (11)

where N(ζ, n) stands for the normalization factor and it is given by

N (ζ, n) =
√

(2ζ )2n+1

(2n)!
. (12)

The Gaunt coefficients are defined as [50–52]

〈l1m1|l2m2|l3m3〉 =
∫ π

θ=0

∫ 2π

ϕ=0

[
Y

m1
l1

(θ, ϕ)
]∗

Y
m2
l2

(θ, ϕ)Y
m3
l3

(θ, ϕ) sin(θ) dθ dϕ. (13)

These coefficients linearize the product of two spherical harmonics:[
Y

m1
l1

(θ, ϕ)
]∗

Y
m2
l2

(θ, ϕ) =
l1+l2∑

l=lmin,2

〈l2m2|l1m1|lm2 − m1〉Ym2−m1
l (θ, ϕ), (14)

where the subscript l = lmin,2 in the summation symbol implies that the summation index l
runs in steps of 2 from lmin to l1 + l2. The constant lmin is given by [52]

lmin =


max(|l1 − l2|, |m2 − m1|),

if l1 + l2 + max(|l1 − l2|, |m2 − m1|) is even
max(|l1 − l2|, |m2 − m1|) + 1,

if l1 + l2 + max(|l1 − l2|, |m2 − m1|) is odd.

(15)
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By using equations (9) and (14), one can easily obtain

χ̃
m1
n1,l1

(ζ1, �r)χ̃m2
n2,l2

(ζ2, �r) =
l1+l2∑

l=lmin,2

〈l2m2|l1m1|lm2 − m1〉χ̃m1−m2
n1+n2−1,l(ζ1 + ζ2, �r). (16)

STFs can be expressed as finite linear combinations of B functions [22]:

χ̃m
n,l(ζ, �r) = 1

ζ n−1

n−l∑
p=p̃

(−1)n−l−p22p+2l−n(l + p)!

(2p − n + l)!(n − l − p)!
Bm

p,l(ζ, �r), (17)

where

p̃ =


n − l

2
if n − l is even

n − l + 1

2
if n − l is odd.

(18)

The B functions are defined as follows [22, 31]:

Bm
n,l(ζ, �r) = (ζ r)l

2n+l (n + l)!
k̂n− 1

2
(ζ r)Ym

l (θ�r , ϕ�r ), (19)

where k̂n− 1
2
(z) stands for the reduced Bessel function [30, 31].

The spherical Bessel function jl(x) is defined by [53]

jl(x) = (−1)lxl

(
d

x dx

)l ( sin(x)

x

)
. (20)

The spherical Bessel function and its first derivative satisfy the following recurrence relations
[53]: {

xjl−1(x) + xjl+1(x) = (2l + 1)jl(x)

xjl−1(x) − (l + 1)jl(x) = xj ′
l (x).

(21)

For the following, we write jn

l+ 1
2

with n = 1, 2, . . . for the successive positive zeros of jl(x).

j 0
l+ 1

2
are assumed to be 0.

The Fourier transform B
m

n,l(ζ, �p) of Bm
n,l(ζ, �r) is given by [16]

B
m

n,l(ζ, �p) =
√

2

π
ζ 2n+l−1 (−i|p|)l

(ζ 2 + |p|2)n+l+1
Ym

l (θ�p, ϕ�p). (22)

We defined A(γ ) for certain γ , as the set of infinitely differentiable functions p(x), which have
asymptotic expansions in inverse powers of x as x → +∞, of the form

p(x) ∼ xγ
(
a0 +

a1

x
+

a2

x2
+ · · ·

)
. (23)

3. Two-centre overlap-like quantum similarity integrals

By using equation (16), one can express the two-centre overlap-like quantum similarity
integrals as follow:

• The first kind:

Z
n1n2n3n4
12 =

4∏
i=1

N (ζi, ni)

l1+l2∑
l12=l12 min,2

〈l2m2|l1m1|l12m2 − m1〉

×
l12+l3∑

l′=l123 min,2

〈l3m3|l12m2 − m1|l′m3 − m2 + m1〉

×Sn4,l4,m4
n1+n2+n3−2,l′,m3−m2+m1

(ζ1 + ζ2 + ζ3, ζ4,
−→
AB). (24)
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• First-type second kind:

Z
n1n2n3n4
12 =

4∏
i=1

N (ζi, ni)

l1+l2∑
l12=l12 min,2

〈l1m1|l2m2|l12m1 − m2〉

×
l3+l4∑

l34=l34 min,2

〈l4m4|l3m3|l34m4 − m3〉

×Sn3+n4−1,l34,m4−m3
n1+n2−1,l12,m1−m2

(ζ1 + ζ2, ζ3 + ζ4,
−→
AB). (25)

• Second-type second kind:

Z
n1n2n3n4
12 =

4∏
i=1

N (ζi, ni)

l1+l3∑
l13=l13 min,2

〈l1m1|l3m3|l13m1 − m3〉

×
l2+l4∑

l24=l24 min,2

〈l4m4|l2m2|l24m4 − m2〉

×Sn2+n4−1,l24,m4−m2
n1+n3−1,l13,m1−m3

(ζ1 + ζ3, ζ2 + ζ4,
−→
AB). (26)

In all the above equations (24)–(26), Snj ,lj ,mj

ni ,li ,mi
(ζi, ζj , �R) stand for two-centre overlap

integrals over STFs, which are given by the following expression:

Snj ,lj ,mj

ni ,li ,mi
(ζi, ζj , �R) =

∫
�r

[
χ

mi

ni ,li
(ζi, �r)]∗

χ
mj

nj ,lj
(ζj , �r − �R) d�r. (27)

The above integrals can be expressed in terms of the two-centre overlap integrals over B
functions by using equation (17):

Snj ,lj ,mj

ni ,li ,mi
(ζi, ζj , �R) = 1

ζ
ni−1
i ζ

nj −1
j

ni−li∑
pi=p̃i

(−1)ni−li−pi 22pi+2li−ni (li + pi)!

(2pi − ni + li)!(ni − li − pi)!

×
nj −lj∑
pj =p̃j

(−1)nj −lj −pj 22pj +2lj −nj (lj + pj )!

(2pj − nj + lj )!(nj − lj − pj )!
BS

pj ,lj ,mj

pi ,li ,mi
(ζi, ζj , �R), (28)

where p̃i and p̃j are given according to equation (18) and the integral BS
pj ,lj ,mj

pi ,li ,mi
(ζi, ζj , �R) is

given by

BS
pj ,lj ,mj

pi ,li ,mi
(ζi, ζj , �R) =

∫
�r

[
B

mi

pi ,li
(ζi, �r)]∗

B
mj

pj ,lj
(ζj , �r − �R) d�r. (29)

With the help of the Fourier transform method, Weniger and Steinborn developed the following
analytic expression for the overlap integrals over B functions [16]:

BS
pj ,lj ,mj

pi ,li ,mi
(ζi, ζj , �R) = 8(−1)lj ili+lj ζ

2ni+li−1
i ζ

2nj +lj −1
j

×
li+lj∑

λ=λmin,2

(−i)λ〈ljmj |limi |λmj − mi〉Ymj −mi

λ (θ �R, ϕ �R)

×
∫ +∞

0

xnx(
ζ 2
i + x2

)k1
(
ζ 2
j + x2

)k2
jλ(Rx) dx, (30)

where 
R = ‖ �R‖ the modulus of �R
k1 = pi + li + 1
k2 = pj + lj + 1
nx = li + lj + 2.
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Now by using equations (30) and (28), one can obtain analytic expressions for the two-centre
overlap-like quantum similarity integrals over STFs, which are given by equations (24)–(26).

• The first kind:

Z
n1n2n3n4
12 =

4∏
i=1

N (ζi, ni)
1

ζ
n123−1
123 ζ

n4−1
4

l1+l2∑
l12=l12 min,2

〈l2m2|l1m1|l12m2 − m1〉

×
l12+l3∑

l′=l123 min,2

〈l3m3|l12m2 − m1|l′m3 − m2 + m1〉

×
n123−l′∑
p1=p̃1

(−1)n123−l′−p1 22p1+2l′−n123(l′ + p1)!

(2p1 − n123 + l′)!(n123 − l′ − p1)!

×
n4−l4∑
p2=p̃2

(−1)n4−l4−p2 22p2+2l4−n4(l4 + p2)!

(2p2 − n4 + l4)!(n4 − l4 − p2)!

× 8(−1)l4 il
′+l4ζ

2p1+l′−1
123 ζ

2p2+l4−1
4

×
l′+l4∑

λ=λmin,2

(−i)λ〈l4m4|l′m123|λm4 − m123〉Ym4−m123
λ (θ �R, ϕ �R)

×
∫ +∞

0

xnx(
ζ 2

123 + x2
)k1

(
ζ 2

4 + x2
)k2

jλ(Rx) dx, (31)

where 
n123 = n1 + n2 + n3 − 2
m123 = m3 − m2 + m1

ζ123 = ζ1 + ζ2 + ζ3.

• First-type second kind:

Z
n1n2n3n4
12 =

4∏
i=1

N (ζi, ni)
1

ζ
n12−1
12 ζ

n34−1
34

l1+l2∑
l12=l12 min,2

〈l1m1|l2m2|l12m1 − m2〉

×
l3+l4∑

l34=l34 min,2

〈l4m4|l3m3|l34m4 − m3〉

×
n12−l12∑
p1=p̃1

(−1)n12−l12−p1 22p1+2l12−n12(l12 + p1)!

(2p1 − n12 + l12)!(n12 − l12 − p1)!

×
n34−l34∑
p2=p̃2

(−1)n34−l34−p2 22p2+2l34−n34(l34 + p2)!

(2p2 − n34 + l34)!(n34 − l34 − p2)!

× 8(−1)l34 il12+l34ζ
2p1+l12−1
12 ζ

2p2+l34−1
34

×
l12+l34∑

λ=λmin,2

(−i)λ〈l34m43|l12m12|λm43 − m12〉Ym43−m12
λ (θ �R, ϕ �R)

×
∫ +∞

0

xnx(
ζ 2

12 + x2
)k1

(
ζ 2

34 + x2
)k2

jλ(Rx) dx, (32)
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where 

n12 = n1 + n2 − 1
n34 = n3 + n4 − 1
m12 = m2 − m1

m43 = m4 − m3

ζ12 = ζ1 + ζ2

ζ34 = ζ3 + ζ4.

• Second-type second kind:

Z
n1n2n3n4
12 =

4∏
i=1

N(ζi, ni)
1

ζ
n13−1
13 ζ

n24−1
24

l1+l3∑
l13=l13 min,2

〈l1m1|l3m3|l13m1 − m3〉

×
l2+l4∑

l24=l24 min,2

〈l4m4|l2m2|l24m4 − m2〉

×Sn2+n4−1,l24,m4−m2
n1+n3−1,l13,m1−m3

(ζ1 + ζ3, ζ2 + ζ4,
−→
AB)

×
n13−l13∑
p1=p̃1

(−1)n13−l13−p1 22p1+2l13−n13(l13 + p1)!

(2p1 − n13 + l13)!(n13 − l13 − p1)!

×
n24−l24∑
p2=p̃2

(−1)n24−l24−p2 22p2+2l24−n24(l24 + p2)!

(2p2 − n24 + l24)!(n24 − l24 − p2)!

× 8(−1)l24 il13+l24ζ
2p1+l13−1
13 ζ

2p2+l24−1
24

×
l13+l24∑

λ=λmin,2

(−i)λ〈l24m42|l13m13|λm42 − m13〉Ym42−m13
λ (θ �R, ϕ �R)

×
∫ +∞

0

xnx(
ζ 2

13 + x2
)k1

(
ζ 2

24 + x2
)k2

jλ(Rx) dx, (33)

where 

n13 = n1 + n3 − 1
n24 = n2 + n4 − 1
m13 = m1 − m3

m42 = m4 − m2

ζ13 = ζ1 + ζ3

ζ24 = ζ2 + ζ4.

In equations (31)–(33), R stands for the modulus of the vector
−→
AB and λmin is given according

to equation (15).
The analytic expressions (31)–(33) turned out to be very difficult to evaluate accurately

and rapidly, because of the presence of the spherical Bessel integrals, which will be referred
to as I:

I =
∫ +∞

0

xnx(
ζ 2
i + x2

)k1
(
ζ 2
j + x2

)k2
jλ(Rx) dx. (34)

For the following, the integrand of the above semi-infinite integral will be referred to as F(x).
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The semi-infinite integral I can be transformed into an infinite series as follows:

I =
+∞∑
n=0

∫ jn+1
λ,R

jn
λ,R

F(x) dx, (35)

where jn
λ,R =

j l+1
λ+ 1

2
R

for l = 0, 1, 2, . . . , are the leading positive zeros of jλ(Rx). j 0
λ,R is

assumed to be 0.
The above infinite series is used to compute values of the semi-infinite integrals with a

pre-determined number of correct digits. This approach is used for the computation of values
with more than 12 correct digits of analytic expressions (31)–(33). These values are listed
in tables 1–3 (Values(†)). For the computation of the finite integrals occurring in the above
infinite series, we used Gauss–Legendre quadrature of order 92. This approach leads to a
highly accurate numerical evaluation of the molecular integrals under consideration, but the
calculation times are prohibitively long.

4. The D transformation and the development of the algorithm

Theorem 1 [38]. Let f (x) be integrable on [0, +∞[(i.e.
∫ +∞

0 f (t) dt exists) and satisfies a
linear differential equation of order m of the form

f (x) =
m∑

k=1

pk(x)f (k)(x), with pk ∈ A(ik), ik � k. (36)

If for all k = i, i + 1, . . . , m; i = 1, 2, . . . , m:

lim
x→+∞ p

(i−1)
k (x)f (k−i)(x) = 0, (37)

and for all l � −1:
m∑

k=1

l(l − 1) · · · (l − k + 1)pk,0 �= 1, (38)

where

pk,0 = lim
x→+∞ x−kpk(x), 1 � k � m, (39)

then as x → +∞:∫ +∞

x

f (t) dt ∼
m−1∑
k=0

f (k)(x)xjk

(
β0,k +

β1,k

x
+

β2,k

x2
+ · · ·

)
, (40)

where

jk � max(ik+1, ik+2 − 1, . . . , im − m + k + 1), k = 0, 1, . . . , m − 1.

The approximation D
(m)

n of
∫ +∞

0 f (t) dt , using the nonlinear D transformation, satisfies the
n(m − 1) + 1 equations given by [37]

D
(m)

n = F(xl) +
m−1∑
k=1

f (k)(xl)x
k+1
l

n−1∑
i=0

β̄k,i

xi
l

, l = 0, 1, . . . , nm, (41)

where D
(m)

n and β̄k,i are the unknowns of the above system. The xl for l = 0, 1, . . . , are the
leading positive zeros of f (x). F(x) = ∫ x

0 f (t) dt .
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Table 1. Two-centre overlap-like integrals of the first kind Z1234
AB where A is a carbon atom and B is a nitrogen. n1 = n2 = 1, n3 = n4, l1 = l2 = l3 = 0, m1 = m2 = m3 = m4 = 0 and

ζ1 = ζ2 = 5.6727. A = (0, 0, 0) and B = (0, 0, zB).

n4 l4 ζ3 ζ4 zB Values(†) Values(ACJU) Values(D) Values(‡)

1 0 5.6727 6.6651 0.5 0.858 425 675 391( 0) 0.858 425 675 391( 0) 0.858 425 675 370( 0) 0.858 425 675 614( 0)
1 0 5.6727 6.6651 1.0 0.347 537 588 663(−1) 0.347 537 588 663(−1) 0.347 537 588 659(−1) 0.347 537 588 654(−1)
1 0 5.6727 6.6651 1.5 0.129 121 127 852(−2) 0.129 121 127 852(−2) 0.129 121 127 001(−2) 0.129 121 127 837(−2)
1 0 5.6727 6.6651 2.0 0.469 994 519 133(−4) 0.469 994 519 132(−4) 0.469 994 462 638(−4) 0.469 994 519 184(−4)
2 0 1.6083 1.9237 0.5 0.501 691 891 384(−1) 0.501 691 891 384(−1) 0.501 691 891 384(−1) 0.501 691 891 246(−1)
2 0 1.6083 1.9237 1.0 0.390 207 911 608(−1) 0.390 207 911 608(−1) 0.390 207 911 607(−1) 0.390 207 911 404(−1)
2 0 1.6083 1.9237 1.5 0.230 014 520 894(−1) 0.230 014 520 894(−1) 0.230 014 520 893(−1) 0.230 014 520 892(−1)
2 0 1.6083 1.9237 2.0 0.119 332 536 417(−1) 0.119 332 536 417(−1) 0.119 332 536 417(−1) 0.119 332 536 431(−1)
2 1 1.6083 1.9170 0.5 −0.737 349 020 141(−1) −0.737 349 020 141(−1) −0.737 349 020 141(−1) −0.737 349 020 146(−1)
2 1 1.6083 1.9170 1.0 −0.646 924 813 966(−1) −0.646 924 813 966(−1) −0.646 924 813 966(−1) −0.646 924 813 973(−1)
2 1 1.6083 1.9170 1.5 −0.391 558 341 502(−1) −0.391 558 341 502(−1) −0.391 558 341 502(−1) −0.391 558 341 738(−1)
2 1 1.6083 1.9170 2.0 −0.205 470 626 697(−1) −0.205 470 626 697(−1) −0.205 470 626 697(−1) −0.205 470 626 552(−1)

(†) Values are obtained using the infinite series (35) for the numerical evaluation of the semi-infinite integrals.
(ACJU) Two-centre overlap-like integrals of the first kind integral values obtained using the ACJU code [20] for the evaluation of the two-centre overlap integrals over B functions.
(D) The nonlinear D was used for the numerical evaluation of the semi-infinite integral occurring in the analytic expression of the two-centre overlap-like integrals of the first kind Z1234

AB .
(‡) Two-centre overlap-like integrals of the first kind integral values obtained in [47, 48].
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Table 2. Two-centre overlap-like integrals of the first-type second kind Z1234
AB where A is a carbon atom and C is a nitrogen. n1 = n2 = 1, n3 = n4, l1 = l2 = l3 = 0, m1 = m2 =

m3 = m4 = 0 and ζ1 = ζ2 = 5.6727. A = (0, 0, 0) and C = (0, 0, zB).

n4 l4 ζ3 ζ4 zB Values(†) Values(ACJU) Values(D) Values(‡)

1 0 5.6727 6.6651 0.5 0.392 518 041 234( 0) 0.392 518 041 235( 0) 0.392 518 041 235( 0) 0.392 518 041 235( 0)
1 0 5.6727 6.6651 1.0 0.287 291 441 055(−2) 0.287 291 441 056(−2) 0.287 291 441 058(−2) 0.287 291 441 058(−2)
1 0 5.6727 6.6651 1.5 0.142 141 502 022(−4) 0.142 141 502 024(−4) 0.142 141 554 478(−4) 0.142 141 502 118(−4)
1 0 5.6727 6.6651 2.0 0.600 438 754 995(−7) 0.600 438 755 929(−7) 0.600 439 980 628(−7) 0.600 438 413 711(−7)
2 0 1.6083 1.9237 0.5 0.185 319 053 139(−1) 0.185 319 053 140(−1) 0.185 319 053 139(−1) 0.185 319 053 140(−1)
2 0 1.6083 1.9237 1.0 0.266 806 719 446(−2) 0.266 806 719 446(−2) 0.266 806 719 218(−2) 0.266 806 719 446(−2)
2 0 1.6083 1.9237 1.5 0.206 888 508 259(−3) 0.206 888 508 260(−3) 0.206 888 508 167(−3) 0.206 888 508 260(−3)
2 0 1.6083 1.9237 2.0 0.115 769 691 749(−4) 0.115 769 691 749(−4) 0.115 769 691 379(−4) 0.115 769 691 756(−4)
2 1 1.6083 1.9170 0.5 −0.159 539 790 120(−1) −0.159 539 790 121(−1) −0.159 539 790 120(−1) −0.159 539 790 121(−1)
2 1 1.6083 1.9170 1.0 −0.324 008 018 849(−2) −0.324 008 018 850(−2) −0.324 008 018 851(−2) −0.324 008 018 850(−2)
2 1 1.6083 1.9170 1.5 −0.280 545 795 502(−3) −0.280 545 795 502(−3) −0.280 545 795 467(−3) −0.280 545 795 503(−3)
2 1 1.6083 1.9170 2.0 −0.165 259 528 950(−4) −0.165 259 528 951(−4) −0.165 259 528 099(−4) −0.165 259 528 957(−4)

(†) Values are obtained using the infinite series (35) for the numerical evaluation of the semi-infinite integrals.
(ACJU) Two-centre overlap-like integrals of the first kind integral values obtained using the ACJU code [20] for the evaluation of the two-centre overlap integrals over B functions.
(D) The nonlinear D was used for the numerical evaluation of the semi-infinite integral occurring in the analytic expression of the two-centre overlap-like integrals of the first-type
second kind Z1234

AB .
(‡) Two-centre overlap-like integrals of the first kind integral values obtained in [47, 48].
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Table 3. Two-centre overlap-like integrals of the second-type second kind Z1234
AB where A is a carbon atom and B is a nitrogen. n2 = n1 = 1, l1 = l2 = 0, m1 = m2 = 0 and

ζ2 = ζ1 = 5.6727. A = (0, 0, 0) and B = (0, 0, zB).

n3 l3 m3 ζ3 n4 l4 m4 ζ4 zB Values(†) Values(ACJU) Values(D)

1 0 0 5.6727 1 0 0 6.6651 0.5 0.380 763 574 385( 0) 0.380 763 574 385( 0) 0.380 763 574 386( 0)
1 0 0 5.6727 1 0 0 6.6651 1.0 0.257 275 540 475(−2) 0.257 275 540 475(−2) 0.257 275 540 487(−2)
1 0 0 5.6727 1 0 0 6.6651 1.5 0.112 359 909 542(−4) 0.112 359 909 542(−4) 0.112 360 177 242(−4)
1 0 0 5.6727 1 0 0 6.6651 2.0 0.402 343 193 284(−7) 0.402 343 194 188(−7) 0.402 475 859 881(−7)
2 0 0 1.6083 2 0 0 1.9237 0.5 0.713 370 891 055(−1) 0.713 370 891 055(−1) 0.713 370 891 055(−1)
2 0 0 1.6083 2 0 0 1.9237 1.0 0.498 773 449 795(−1) 0.498 773 449 795(−1) 0.498 773 449 794(−1)
2 0 0 1.6083 2 0 0 1.9237 1.5 0.201 175 530 475(−1) 0.201 175 530 476(−1) 0.201 175 530 473(−1)
2 0 0 1.6083 2 0 0 1.9237 2.0 0.631 502 044 463(−2) 0.631 502 044 463(−2) 0.631 502 044 372(−2)
2 0 0 1.6083 2 1 0 1.9170 0.5 −0.111 091 841 731( 0) −0.111 091 841 731( 0) −0.111 091 841 731( 0)
2 0 0 1.6083 2 1 0 1.9170 1.0 −0.838 714 636 018(−1) −0.838 714 636 018(−1) −0.838 714 636 018(−1)
2 0 0 1.6083 2 1 0 1.9170 1.5 −0.344 495 905 421(−1) −0.344 495 905 422(−1) −0.344 495 905 420(−1)
2 0 0 1.6083 2 1 0 1.9170 2.0 −0.109 079 091 615(−1) −0.109 079 091 615(−1) −0.109 079 091 613(−1)

(†) Values are obtained using the infinite series (35) for the numerical evaluation of the semi-infinite integrals.
(ACJU) Two-centre overlap-like integrals of the first kind integral values obtained using the ACJU code [20] for the evaluation of the two-centre overlap integrals over B functions.
(D) The nonlinear D was used for the numerical evaluation of the semi-infinite integral occurring in the analytic expression of the two-centre overlap-like integrals of the second-type
second kind Z1234

AB .
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Lemma 1. Let p(x) be in A(γ ) for some γ . Then

(i) If γ �= 0 then p′(x) ∈ A(γ−1), otherwise p′(x) ∈ A(γ−2).
(ii) If q(x) ∈ A(δ) then p(x)q(x) ∈ A(γ +δ).

(iii) If q(x) ∈ A(δ) and γ − δ > 0 then the function p(x) + q(x) ∈ A(γ ). If γ = δ then the
function p(x) + q(x) ∈ A(γ ).

(iv) The function 1/p(x) ∈ A(−γ ).

The proof of lemma 1 follows from the properties of asymptotic power series in the sense of
Poincaré [54].

Corollary 1 [38]. If f satisfies a linear mth order differential equation of the form given by
equation (36) in theorem 1, and if g ∈ A(γ ), then fg satisfies a linear differential equation of
order m or less with coefficients that have asymptotic expansions in inverse powers of x.

In [29], we showed that the integrand F(x), of the semi-infinite integral occurring in
equations (31)–(33), satisfies a second-order linear differential of the form required to apply the
nonlinear D transformation. This differential equation was obtained using the second-order
linear differential equation satisfied by the spherical Bessel function jλ(Rx) [37].

The integrand F(x) is given by

F(x) = g(x)jλ(Rx), (42)

where the function g(x) is given by

g(x) = xnx(
ζ 2
i + x2

)k1
(
ζ 2
j + x2

)k2
. (43)

The spherical Bessel function satisfies a second-order linear differential equation given by
[53]

jλ(Rx) = q1(x)j ′
λ(Rx) + q2(x)j ′′

λ (Rx), (44)

where

q1(x) = − 2x

(Rx)2 − λ2 − λ
and q2(x) = x2

(Rx)2 − λ2 − λ
. (45)

Using lemma 1, we showed that the coefficients q1(x) and q2(x) of the differential equation (44)
are, respectively, in A(−1) and A(0). From equation (43), one can easily show that g(x) ∈
A(nx−2(k1+k2)).

From the above arguments and the corollary, it follows that g(x)jλ(Rx) satisfies a
second-order linear differential equation with coefficients that have asymptotic expansions
in inverse powers of x. This differential equation, which is of the form required to apply the
D transformation, can be obtained explicitly by replacing jλ(Rx) by F(x)

g(x)
in equation (44):

F(x) = p1(x)F ′(x) + p2(x)F ′′(x), (46)

where

p1(x) = g(x)q1(x) − 2q2(x)g′(x)

g(x)H(x)
∈ A(−1) and p2(x) = q2(x)

H(x)
∈ A(0), (47)

and where H(x) is given by

H(x) = 1 +
q1(x)g′(x)

g(x)
− 2q2(x)(g′(x))2

g2(x)
+

q2(x)g′′(x)

g(x)
∈ A(0). (48)
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Using the fact that p1(x) ∈ A(−1) and p2(x) ∈ A(0), one can show that all the conditions of
theorem 1 are fulfilled. Consequently, the approximation of this semi-infinite integral I (34),
occurring in equations (31)–(33), can then be obtained by solving the linear system given by
(41) with m = 2:

D
(2)

n =
∫ xl

0
F(t) dt + x2

l g(xl)j
′
λ(Rxl)

n−1∑
i=0

β̄1,i

xi
l

, l = 0, 1, . . . , n, (49)

where xl =
j l+1
λ+ 1

2
R

for l = 0, 1, 2, . . . , are the leading positive zeros of jλ(Rx).
As we explained in [29], if xl is a zero of jλ(Rx) then from equations (21) it follows that

j ′
λ(Rxl) = Rjλ−1(Rxl). (50)

From the above equation, it follows that one does not have to compute the first derivative of the

spherical Bessel function for calculating the approximation D
(2)

n . To use the expression (50),
one should separate the case where λ = 0, where we can use the Cramer’s rule as suggested

by Sidi [37] for calculating the approximation D
(2)

n , since the zeros of j0(Rx) = sin(Rx)

Rx
are

equidistant. In this case, the expression of D
(2)

n is given by

D
(2)

n =
∑n+1

i=0

(
n+1

i

)
(1 + i)nF (xi)

/ [
x2

i g(xi)
]∑n+1

i=0

(
n+1

i

)
(1 + i)n

/ [
x2

i g(xi)
] . (51)

The computation of the above equation can be performed recursively using recurrence relations
developed in [44, 45].

5. Two-centre overlap integrals over B functions

In this section, we present analytic developments of the two-centre overlap integrals over B
functions, based on previous work by Steinborn group [16–21]. Different representations
which can be used for the computation of these overlap integrals over B functions were
obtained and with the help of equations (24)–(26) and (28), these representations can also
be used for the computation of the two-centre overlap-like quantum similarity integrals over
STFs.

The Fourier transform method in combination with the Fourier transformation of B
functions (22) produces the following integral representation for the overlap integral [19]:

BSn2,l2,m2
n1,l1,m1

(ζ1, ζ2, �R) = 2

π
ζ

2n1+l1−1
1 ζ

2n2+l2−1
2

lmax∑
l=lmin

(2)〈l2m2|l1m1|lm2 − m2〉

×
∫

e−i �R·�p pl1+l2−lYm2−m1
l (�p)[

ζ 2
1 + p2

]n1+l1+1[
ζ 2

2 + p2
]n2+l2+1 d3 �p. (52)

If the two scaling parameters in the above equation are equal, ζ1 = ζ2, then we only have to
use the Fourier integral representation of a B function (22), together with [19]

p2�l = (−1)�lζ 2�l
1

�l∑
t=0

(−1)t
(

�l

t

) (
ζ 2

1 + p2

ζ 2
1

)t

, (53)
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which is essentially a reformulation of the binomial theorem, to obtain the overlap with the
same scaling parameters [19]:

BSn2,l2,m2
n1,l1,m1

(ζ1, ζ2, �R) = 4π

ζ 3
1

lmax∑
l=lmin

(2)〈l2m2|l1m1|lm2 − m2〉

×
�l∑
t=0

(−1)t
(

�l

t

)
B

m2−m1
n1+n2+2�l−t+1,l(ζ1, �R), (54)

where

�l = l1 + l2 − 1

2
.

Note that the above equation was first derived by Filter and Steinborn [21], who obtained this
expression via the addition theorem of the modified Helmholtz harmonics [21].

The overlap formula (54) is remarkably compact and a quadrature scheme will most likely
be (much) less efficient than this explicit expression. Nevertheless, (54) contains one potential
source of numerical instabilities: if �l in (54) becomes large then it is quite likely that the sum∑�l

t=0, which follows from (53), leads to a potential serious loss of significant digits since it
contains large terms with strictly alternating signs. In such a case, a quadrature of the integral
representation (52), or rather its radial part, may well be less likely to produce numerical
instabilities than the otherwise almost trivial expression (54) for the overlap with equal scaling
parameters.

The situation is more complicated in the case of different scaling parameters, ζ1 �= ζ2.
One possibility would be to use the partial fraction decomposition [16]:[
ζ 2

1 + p2
]−n1−l1−1 [

ζ 2
2 + p2

]−n2−l2−1

= (−1)n2+l2+1

(n2 + l2)!

n1+l1∑
ν=0

(n1 + n2 + l1 + l2 − ν)!

(n1 + l1 − ν)!

[
ζ 2

1 − ζ 2
2

]ν−n1−n2−l1−l2−1[
ζ 2

1 + p2
]ν+1

+
(−1)n1+l1+1

(n1 + l1)!

n2+l2∑
ν=0

(n1 + n2 + l1 + l2 − ν)!

(n2 + l2 − ν)!

[
ζ 2

2 − ζ 2
1

]ν−n1−n2−l1−l2−1[
ζ 2

2 + p2
]ν+1 . (55)

Inserting this into the integral representation (52) yields the so-called Jacobi polynomial
representation of the overlap integral [22]:

BSn2,l2,m2
n1,l1,m1

(ζ1, ζ2, �R) = (−1)l2 4π

lmax∑
l=lmin

(2)〈l2m2|l1m1|lm2 − m2〉

×
[

(−1)n1+l1(ζ1/ζ2)
l2

ζ 3
2 [1 − (ζ1/ζ2)2]n2+l2+1

n1+l1∑
s=0

(−1)sP
(s−n1−�l2,n2+�l1)
n1+l1+s

(
ζ 2

2 + ζ 2
1

ζ 2
2 − ζ 2

1

)

×B
m2−m1
s−l (ζ1, �R)

(−1)n2+l2(ζ2/ζ1)
l1

ζ 3
1 [1 − (ζ2/ζ1)2]n1+l1+1

×
n2+l2∑
s=0

(−1)sP
(s−n2−�l1,n1+�l2)
n2+l2+s

(
ζ 2

1 + ζ 2
2

ζ 2
1 − ζ 2

2

)
B

m2−m1
s−l (ζ2, �R)

]
, (56)

where

�l1 = l − l1 + l2

2
and �l2 = l + l1 − l2

2
.
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P
(α,β)
n (x) is a Jacobi polynomial [55]. For the special Jacobi polynomials in (56), a linear three-

term recursion could be derived which permits a very convenient and effective computation
of these polynomials [17].

The Jacobi polynomial representation (56) in combination with the recursive scheme
mentioned above permits a remarkably efficient evaluation of the overlap integral with different
scaling parameters. Unfortunately, (56) contains cancelling singularities as R → 0 and
ζ1 → ζ2, which can create horrible numerical instabilities. Thus, (56) can only produce
reliable results if R is sufficiently large and if the two scaling parameters are sufficiently
different.

Thus, for small values of R and for ζ1 ≈ ζ2, alternative representations have to be used.
One possibility would be the Taylor expansion [16]:

[γ 2 + p2]−n−l−1 = [δ2 + p2]−n−l−1
1 F0

(
n + l + 1; [δ2 − γ 2]

/ [
ζ 2

2 + p2
])

. (57)

The generalized hypergeometric series 1F0 in the above equation converges absolutely and
uniformly for all p ∈ R provided that γ ∈ [0, 2

1
2 δ). This Taylor expansions essentially

equivalent to the multiplication theorem of B functions:

Bm
n,l(γ, �r) = (γ /δ)2n+l−1

+∞∑
ν=0

(n + l + 1)ν

ν!

(
δ2 − γ 2

δ2

)ν

Bm
n+ν(δ, �r), (58)

which was used by Filter and Steinborn [22] and which converges for |1 − (γ /δ)2| < 1.
With the help of equation (57), we immediately obtain [19][

ζ 2
1 + p2

]−n1−l1−1 [
ζ 2

2 + p2
]−n2−l2−1

= [
ζ 2

2 + p2
]−n1−n2−l1−l2−2

1 F0
(
n1 + l1 + 1; [

ζ 2
2 − ζ 2

1

] / [
ζ 2

2 + p2
])

(59)

= [
ζ 2

1 + p2
]−n1−n2−l1−l2−2

1 F0(n2 + l2 + 1; [
ζ 2

1 − ζ 2
2

]
/
[
ζ 2

1 + p2
]
). (60)

The generalized hypergeometric series 1F0 in (59) converges absolutely and uniformly for all
p ∈ R provided that ζ1 ∈ [0, 2

1
2 ζ2), whereas the hypergeometric series 1F0 in (60) requires

ζ2 ∈ [0, 2
1
2 ζ1).

Inserting the power series expansions (59) and (60) into (52) yields [19]

BSn2,l2,m2
n1,l1,m1

(ζ1, ζ2, �R)

=
(

ζ1

ζ2

)2n1+l1−1 +∞∑
ν=0

(n1 + l1 + 1)ν

ν!

(
ζ 2

2 − ζ 2
1

ζ 2
2

)ν

B

Sn2,l2,m2
n1+ν,l1,m1

(ζ2, ζ2, �R) (61)

=
(

ζ2

ζ1

)2n2+l2−1 +∞∑
ν=0

(n2 + l2 + 1)ν

ν!

(
ζ 2

1 − ζ 2
2

ζ 2
1

)ν

B

Sn2+ν,l2,m2
n1,l1,m1

(ζ1, ζ1, �R). (62)

The series expansions (61) and (62), or also the power series (57) and (59), can be viewed to
be different analytic continuations of the same function.

Nevertheless, the results in [17] showed that it would be desirable to have alternative
series expansions that converge more rapidly than (61) and (62). This can be accomplished
with the help of the following series expansion [19]:[
ζ 2

1 + p2
]−n1−l1−1 [

ζ 2
2 + p2

]−n2−l2−1 =
[
ζ 2

1 + ζ 2
2

2
+ p2

]−n1−n2−l1−l2−2

×
+∞∑
ν=0

2F0(−ν, n1 + l1 + 1; n1 + l1 + l2 + 2; 2)

× (n1 + n2 + l1 + l2 + 2)ν

ν!

(
ζ 2

1 − ζ 2
2

ζ 2
1 + ζ 2

2 + 2p2

)ν

. (63)
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With the help of an estimate for the hypergeometric series 2F1 [19], it can be shown that this
series converges for all ζ1, ζ2, p ∈ R.

At first sight, the series expansion (63) seems to be much more complicated than the series
expansions (57) and (59). However, the terminating hypergeometric series 2F1 in (63) can be
computed conveniently with the help of the following three-term recursion that is stable in
direction of increasing ν ∈ N [19]:

(n + m + ν + 2)2F1(−ν − 1,m + 1;m + n + 2; 2)

= (n − m)2F1(−ν,m + 1;m + n + 2; 2)

+ ν2F1(−ν + 1,m + 1;m + n + 2; 2), n,m ∈ N0. (64)

Accordingly, the additional computational costs due to the terminating hypergeometric series
2F1 in (63) are negligible. Inserting the series expansions (63) into (52) yields [19]

BSn2,l2,m2
n1,l1,m1

(ζ1, ζ2, �R) = ζ
2n1+l1−1
1 ζ

2n2+l2−1
2[

(ζ 2
1 + ζ 2

2 )/2
]n2+n2+(l1+l2)/2−1

×
+∞∑
ν=0

2F1(−ν, n1 + l1 + 1; n1 + n2 + l1 + l2 + 2; 2)

× (n1 + n2 + l1 + l2 + 2)ν

ν!

(
ζ 2

1 − ζ 2
2

ζ 2
1 + ζ 2

2

)ν

× BSn2,l2,m2
n1+ν,l1,m1

([(
ζ 2

1 + ζ 2
2

)/
2
]1/2

,
[(

ζ 2
1 + ζ 2

2

)/
2
]1/2

, �R)
. (65)

The numerical properties of this series expansion in combination with convergence acceleration
methods were studied in [23, 18]. It is also possible to derive an integral representation for the
overlap integral of two B functions with different scaling parameters that involves an integration
over a nonphysical variable. The well-known Feynman identity [56] can be generalized to
give [57]

a−mb−m = (m + n − 1)!

(m − 1)!(n − 1)!

∫ 1

0

tm(1 − t)n

[at + b(1 − t)]m+n
dt, m, n ∈ N. (66)

This yields for the characteristic denominators [18]:[
ζ 2

1 + p2
]−n1−l1−1 [

ζ 2
2 + p2

]−n2−l2−1

= (n1 + n2 + l1 + l2 + 1)!

(n1 + l1)!(n2 + l2)!

∫ 1

0

tn1+l1(1 − t)n2+l2[
p2 + ζ 2

1 t + ζ 2
2 (1 − t)

]n1+n1+l1+l2+2 dt. (67)

Combination of (54), (52) and (67) yields [18]

BSn2,l2,m2
n1,l1,m1

(ζ1, ζ2, �R) = ζ
2n1+l1−1
1 ζ

2n2+l2−1
2

(n1 + n2 + l1 + l2 + 1)!

(n1 + l1)!(n2 + l2)!

×
∫ 1

0

tn1+l1(1 − t)n2+l2

[γ (ζ1, ζ2, t)]
n1+n1+l1+l2+2

B

Sn2,l2,m2
n1,l1,m1

(γ (ζ1, ζ2, t), γ (ζ1, ζ2, t), �R) dt, (68)

where γ (ζ1, ζ2, t) =
√

ζ 2
1 t + ζ 2

2 (1 − t).
This integral representation was first used by Trivedi and Steinborn [33] in combination

with an adaptive quadrature routine. Bhattacharya and Dhabal [58] used (68) in combination
with Gauss–Legendre quadrature. Later, it was shown by Weniger and Steinborn [18] that
Gauss–Jacobi gives better results than Gauss–Legendre. Homeier and Steinborn [24] also used
this integral representation in combination with a so-called Möbius quadrature rule introduced
in [59]. FORTRAN programs were published by Homeier, Weniger and Steinborn [20].
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6. Numerical results and discussion

By using the fact that the integrand F(x) converges to 0 when x → +∞ and if λ �= 0 then
limα→0 jλ(α) = 0, one can easily show that when R → 0 and λ �= 0 the semi-infinite spherical
Bessel integrals occurring in equations (31)–(33) vanish. In the case when λ = 0 and R → 0,
we replaced j0(Rx) by its Taylor development and we obtained the following approximation
for these semi-infinite integrals:∫ +∞

0
F(x) dx ≈

∫ +∞

0
g(x)

(
1 − R2x2

3!
+

R4x4

5!
− R6x6

7!
+ · · ·

)
dx. (69)

The semi-infinite integral in the rhs of the above equation is evaluated using Gauss–Laguerre
quadrature of order 48. In our algorithm, we used only the first term of the Taylor development,
but one can increase the accuracy by including higher terms.

The linear system (49) is solved using the LU decomposition method. The finite integrals∫ xl

0 F(t) dt occurring in equations (49) and (51) are transformed into a finite sum as follows:∫ xl

0
F(t) dt =

l−1∑
i=0

∫ xi+1

xi

F(t) dt, (70)

and each term of the above finite sum is evaluated using Gauss–Legendre quadrature of order
24.

For the numerical evaluation of Gaunt coefficients which occur in the complete expressions
of the integrals under consideration (31)–(33), we used the subroutine GAUNT.F developed by
Weniger [52]. The spherical harmonics Ym

l (θ, ϕ) are computed using the recurrence formulae
presented in [52].

In tables 1–3, we listed values of the two-centre overlap-like quantum similarity integrals
of the first and second kinds, over STFs.

Values(†) are obtained using the infinite series (35) to evaluate the semi-infinite integrals
I, occurring in the analytic expressions of the integrals under consideration (31)–(33).

Values(ACJU) are obtained using the ACJU code [20] for the numerical evaluation of
the two-centre overlap integrals over B functions occurring in the analytic expression of the
two-centre overlap-like quantum similarity integrals.

Values(D) are obtained using the algorithm described in the present work for the numerical
evaluation of the semi-infinite integral I.

Values(‡) are obtained using the one-centre two-range method [47] and using the approach
based on the epsilon algorithm of Wynn [48].

From the numerical tables, one can note that the nonlinear D is able to reach a high
accuracy in the numerical evaluation of the molecular integrals under consideration, more
than 12 correct digits in most cases. Note that one can increase the accuracy by increasing
the order of accuracy n (49) and (51). Our results are in a complete agreement with those
obtained using the ACJU code and with those listed in [47, 48]. These arguments illustrate
that introduction of the nonlinear transformations methods in molecular integral calculations
constitutes an important step towards a development of highly accurate and fast algorithms
for the molecular structure calculations.

We also compared the calculation times obtained from each approach described above.
The use of the ACJU leads to the fastest algorithm compared with the nonlinear D

transformation and the one-centre two-range method. For the calculation presented in table 1,
the algorithm using the ACJU code requires less than 0.30 ms (calculations times are computed
after the common blocks are initialized). The D transformation requires less than 0.85 ms.
The approaches presented in [47, 48] require more than 1.6 ms.
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It is clear that the ACJU code leads to a very fast and highly accurate algorithm for the
numerical evaluation of the molecular integrals under consideration. The nonlinear D is faster
compared to the alternatives presented in [47, 48]. The algorithm obtained from D could be
further improved by developing extrapolation techniques suitable to the two-centre overlap
integrals and by initializing all the common block in the program.

All the computations were done in FORTRAN double precision. We used Lahey ED
compiler (15 significant decimals in double precision).

In all tables, the numbers in parentheses represent powers of 10 and all entries are in
atomic units. Calculations were performed on a Workstation with an Intel Xeon Processor
with 2.4 GHz.

7. Conclusion

STFs are used as a basis set of atomic orbitals. The two-centre overlap-like quantum similarity
integrals are expressed in terms of the usual two-centre overlap integrals, which in their turn are
expressed in terms of overlap integrals over the so-called B functions. Analytic expressions
obtained using the Fourier transform method are used for the analytic development of the
two-centre overlap-like quantum similarity integrals.

The obtained analytic expressions for the overlap-like quantum similarity integrals for
the first and second kinds involve semi-infinite highly oscillatory spherical Bessel integral
functions, which are the principal source in the numerical evaluation of the integrals under
consideration.

With the help of the nonlinear D transformation, which is one of the most effective general
approaches for increasing the rate of convergence of semi-infinite oscillatory integrals whose
integrands satisfy linear differential equations with coefficients having asymptotic expansions
in inverse powers of their argument x as x → +∞, the convergence of the semi-infinite
spherical Bessel integrals is improved. An algorithm based on the D transformation is now
developed and section 6 shows that this algorithm is capable to reproduce results from the
literature with a high pre-determined accuracy.

The use of ACJU code developed by Homeier, Weniger and Steinborn leads to the
development of highly accurate and rapid algorithm for the numerical evaluation of the two-
centre overlap-like quantum similarity integrals. From this it follows that the use of the basis
set of B functions in the analytic development of the molecular integrals under consideration
or for the molecular integrals in general could lead to the development of highly efficient and
rapid algorithms for accurate molecular structure calculations.
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[3] Carbò-Dorca R, Gironés X and Mezey P G (ed) 2001 Fundamentals of Molecular Similarity (New York:
Kluwer/Plenum)
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